
ooNodz
Smart Contracts Audit

Date Author Notes

2023-06-28 Antoine Detante Initial version

2023-07-14 Antoine Detante Addition of 2 new “warnings”

2023-09-26 Antoine Detante Updated with fixed version



1. Introduction

1.1. Context
ooNodz provides infrastructure services for users to operate validation nodes on
the Avalanche blockchain. More specifically, the company has developed a
blockchain protocol enabling its customers to provision validation nodes on the
network, for a fixed & prepaid period of time.
As a non-custodial hosting provider, the solution does not manage the customers'
stake: only the infrastructure component (i.e. validation nodes) is operated by the
platform, leaving customers in full control of their funds.

The protocol audited in this document refers to the Smart Contracts used by
customers to register a validation node for a given period of time.

URL of the audited Smart Contracts:
https://gitlab.com/oonodz/contracts/-/tree/7b3fb1ef8ed1102193344543a12afc024bf6
0532/contracts
Git commit: 7b3fb1ef8ed1102193344543a12afc024bf60532

1.2. Objectives
The objective of this audit is to analyze the source code of Smart Contracts in
order to:

● Identify any potential security risks (code bugs, malicious use, well-known
security vulnerabilities, …)

● Assess the maintainability, readability and compliance with industry
standards (in the perspective of the platform's future developments)

2. Audit Methodology
The methodology used to produce this audit was based on the following
principles:

● Code Review: Perform a review of the Solidity code to identify any potential
security vulnerabilities. More specifically:

○ Input Validation (check if the contract properly validates and
sanitizes user inputs)

ooNodz Smart Contracts Audit
2023-06-28 1

https://gitlab.com/oonodz/contracts/-/tree/7b3fb1ef8ed1102193344543a12afc024bf60532/contracts
https://gitlab.com/oonodz/contracts/-/tree/7b3fb1ef8ed1102193344543a12afc024bf60532/contracts


○ Access Control (ensure that the contract implements appropriate
access control mechanisms to prevent unauthorized access)

○ Function and Variable Visibility
○ External Calls and Contracts Interaction (assess how the Smart

Contracts interact with other contracts)
○ Error Handling
○ Security Best Practices (ensure the code follows Solidity best

practices)
● Tests

○ Analysis of existing unit tests
○ Execution of unit tests
○ Manual execution of Smart Contracts on a local environment to

analyze operation and interactions between contracts
● Static Analysis: use static analysis tools to detect potential vulnerabilities or

suspicious patterns. These tools can help identify common security issues
like uninitialized variables, dead code, or code that can be prone to
vulnerabilities.

● Manual Review and Verification to validate the findings from the previous
steps

3. Smart Contracts & Roles Overview

The protocol is structured around 4 Smart Contracts that are linked to each other:

● AccessControl, based on standard OpenZeppelin Access Control model,
used to define and check roles and authorizations of accounts that are
involved with the platform

● NodeIdNFT, based on OpenZeppelin implementation of standard ERC721
Token, used to represent a validator identifier (NodeId) and its current
owner

● Billing used to store billing configuration (VAT rates, subscription prices,
supported ERC20 tokens for payment, ...)

● Subscriptions is the protocol's main Smart Contract, with which end users
interact directly. It allows an user to start, extend or cancel a service
subscription.

ooNodz Smart Contracts Audit
2023-06-28 2



In addition to End Users who subscribe to the service, 5 roles have been defined
and are used to control access to Smart Contract functionalities:

● Admin: the admin's role is limited to Smart Contract configuration
functions (link between contracts, term & condition versions). His main
responsibility is to define the address of the external wallet that will receive
all user payments.

● Billing: accounts with the Billing role can update billing config (VAT rate,
tokens supported for payment, service price, ...)

● Burner: a special role that can (in addition to the current token’s owner)
destroy a given NodeIdNFT token

● Minter: accounts with the Minter role can create NodeIdNFT tokens, before
these are distributed to End Users. They are also responsible for defining
the number of validation slots available (i.e. limiting the number of new
subscriptions).

● Refunder: “refunders” can finalize end user's refund requests (thus
triggering the transfer of ERC20 tokens to be refunded to the user’s
account).

This separation of roles provides a clear division of responsibilities between the
different aspects of the system.

ooNodz Smart Contracts Audit
2023-06-28 3



4. Upgradability

These 4 Smart Contracts deployed for the ooNodz platform are upgradable.
The solidity code can therefore be updated after the initial deployment, via a
“Proxy” mechanism that separates the Smart Contract implementation and the
addresses used to interact with it.

In this way, the current version of the implementation is configured at the Proxy
level, and a special account (admin) can be used to change the address of the
current implementation of each of the 4 Smart Contracts.

This solution has multiple advantages (easy maintenance of Smart Contracts, in
particular quick and transparent fix if a bug is detected in the code of a Smart
Contract), but also has an impact in terms of transparency: the rules defined in
Smart Contracts can be modified by the administrator.

In this case, Smart Contracts do not store user funds (user stakes are managed
directly by the Avalanche protocol, outside the ooNodz platform, via the
Avalanche Wallet). So these upgrades of Smart Contracts have no impact on
user funds, and do not introduce any particular risk for the user.

The implementation chosen here is based on Openzeppelin's Upgradable library.
Smart Contract administration operations (contracts’ upgrade, change of proxy
address, ...) are handled by the OpenZeppelin Defender platform and the Safe
wallet.
⇒ Gnosis Safe at address 0x1fC01374A2A2375cFa93478c2bE459F98A6355d8.

In this way, Smart Contract upgrade operations are operated within the current
ooNodz governance framework: the “admin” account is protected by the Vault,
which requires a multisig from project co-founders before triggering a Smart
Contract update.

This limits the risk of a unilateral takeover by one of the parties, and is also
scalable according to the needs of the project: a decentralized governance can
then be introduced, with for example a stakeholder voting mechanism to
authorize an upgrade of the Smart Contracts.

ooNodz Smart Contracts Audit
2023-06-28 4

https://app.safe.global/home?safe=avax:0x1fC01374A2A2375cFa93478c2bE459F98A6355d8


5. Findings & Recommendations

5.1. Severity Breakdown

Level Description Recommended action

Critical Bugs that may result in the theft of
assets, the locking of funds, or any
other scenarios where funds could
be transferred to unauthorized
parties.

Immediately fix the issue

Major Bugs that have the potential to
cause a contract failure, requiring
manual intervention to recover or
modify the contract state

Fix as soon as possible

Warning Bugs that can disrupt the intended
logic of the contract or make it
vulnerable to DoS attacks

Take into
consideration and
implement fix in
certain period

Comment Other issues and recommendations
reported

Take into
consideration.

After receiving feedback from the development team regarding the list of
findings listed in this Audit Report, the following statuses have been assigned to
each finding:

Status Description

Fixed Recommended fixes have been made to the code and no
longer affect its security

Acknowledged The team acknowledges this finding. Plans are in place to
address the recommendations associated with this finding in
the future. It is determined that this finding does not impact
the overall safety of the Smart Contract

No issue Finding does not affect the overall safety of the Smart
Contract

ooNodz Smart Contracts Audit
2023-06-28 5



5.2. Findings

5.2.1. Critical

No Critical point found.

5.2.2.Major

No Major point found

5.2.3.Warning

WARNING-1 Potential Re-Entrancy vulnerability in completeRefund

Smart Contract Subscriptions.sol

Status Fixed (68fd38a712614c9962b8104c8071f56daa74ac87)

Description

In the completeRefund function, the call to transferFrom to transfer the
refund to the user is done before updating the state:

// Transfer tokens to customer

token.transferFrom(_msgSender(), _wallet, _amount);

// Change refund status

refunds[_wallet][_tokenId].pending = false;

emit RefundCompleted(_wallet, _msgSender(), _tokenId, refund.currencySymbol,

refund.amount);

If the target ERC20 Smart Contract allows calls to be made to an external
function, then it is potentially possible to perform a re-entrancy attack on this
function.
In practice, the risk of this flaw is linked to non-standard ERC20 Smart Contracts
being authorized on the Billing contract. This is not currently the case, so this
function is not vulnerable to a re-entrancy attack with the USDT and USDC
tokens currently supported.

See here for more information about Re-Entrancy.

ooNodz Smart Contracts Audit
2023-06-28 6

https://gitlab.com/oonodz/contracts/-/blob/7b3fb1ef8ed1102193344543a12afc024bf60532/contracts/Subscriptions.sol#L152
https://solidity-by-example.org/hacks/re-entrancy/


WARNING-1 Potential Re-Entrancy vulnerability in completeRefund

Recommendation

Move state update

// Change refund status

refunds[_wallet][_tokenId].pending = false;

before the call to token.transferFrom

WARNING-2 Pending Refund is discarded when user starts a new
subscription

Smart Contract Subscriptions.sol

Status Fixed (68fd38a712614c9962b8104c8071f56daa74ac87)

Description

In the hasPendingRefund function, the code checks that the user has no active
subscription, otherwise it is assumed that there is no pending refund:

function hasPendingRefund(address _wallet, uint256 _tokenId) public view returns

(bool) {

// Cannot have a pending refund if the subscription is still active

if (hasActiveSubscription(_wallet, _tokenId) == true) return false;

// ...

}

However, it is possible to create a new subscription with a pending refund.
In this case, if the user creates a new subscription before the previous refund is
completed, the previous refund is discarded.

Note: this bug impacts functionality for the user, not Smart Contract security.

Recommendation

Remove the test about active subscription in hasPendingRefund function.

ooNodz Smart Contracts Audit
2023-06-28 7

https://gitlab.com/oonodz/contracts/-/blob/7b3fb1ef8ed1102193344543a12afc024bf60532/contracts/Subscriptions.sol#L142


WARNING-3 Yearly subscription reload conditions not checked

Smart Contract Subscriptions.sol

Status Fixed (68fd38a712614c9962b8104c8071f56daa74ac87)

Description

When reloading a yearly subscription, the contract must ensure that the
renewal occurred in the last month of the current subscription, and for a
maximum duration of 1 year.

Currently these rules are controlled using this test:

uint256 _startTs = currentSubscription.endTs;

uint256 _endTs = currentSubscription.endTs;

// ...

if (currentSubscription.period == Billing.SubscriptionPeriod.Year) {

_endTs = _startTs + (365 days) * uint256(_addedPeriods);

require(

(_endTs - _startTs) < 396 days,

"a yearly subscription can only be reloaded the last month and only for one

more year"

);

}

If the user chooses to reload for 1 year, then he can reload even if he is not in the
last month of the current subscription. As a result, he can extend his
subscription by several years, which is not expected.

Recommendation

In the require test, check the duration against the end date of the reloaded
subscription and the current date (block.timestamp) to ensure that the new
end date does not exceed 1 year and 1 month (= 396 days).

require(

(_endTs - block.timestamp) < 396 days,

"a yearly subscription can only be reloaded the last month and only for one

more year"

);

ooNodz Smart Contracts Audit
2023-06-28 8

https://gitlab.com/oonodz/contracts/-/blob/7b3fb1ef8ed1102193344543a12afc024bf60532/contracts/Subscriptions.sol#L356-359


5.2.4. Comment

COMMENT-1 Potential Re-Entrancy vulnerability in newSubscription

Smart Contract Subscriptions.sol

Status Fixed (68fd38a712614c9962b8104c8071f56daa74ac87)

Description

In the newSubscription function, the call to transferFrom to transfer the
refund to the user is done before updating the state:

// Transfer amount to destinationWallet

token.transferFrom(_msgSender(), destinationWallet, totalTokenAmount); // ICI

// Store subscription

uint256 _priceRate = billing.priceRates(uint8(currentSubscription.period));

uint256 _vatRate = billing.vatRates(customers[_msgSender()].countryOfResidence);

subscriptions[_msgSender()][_tokenId].endTs = _endTs;

subscriptions[_msgSender()][_tokenId].priceRate = _priceRate;

subscriptions[_msgSender()][_tokenId].vatRate = _vatRate;

nodeidFreeAfter[_tokenId] = _endTs;

But the target address (destinationWallet) is supposed to be under team
control so the impact is non-existent.

Recommendation

Move call to transferFrom after state updates

// Store subscription

uint256 _priceRate = billing.priceRates(uint8(currentSubscription.period));

uint256 _vatRate = billing.vatRates(customers[_msgSender()].countryOfResidence);

subscriptions[_msgSender()][_tokenId].endTs = _endTs;

subscriptions[_msgSender()][_tokenId].priceRate = _priceRate;

subscriptions[_msgSender()][_tokenId].vatRate = _vatRate;

nodeidFreeAfter[_tokenId] = _endTs;

// Transfer amount to destinationWallet

token.transferFrom(_msgSender(), destinationWallet, totalTokenAmount);

ooNodz Smart Contracts Audit
2023-06-28 9

https://gitlab.com/oonodz/contracts/-/blob/7b3fb1ef8ed1102193344543a12afc024bf60532/contracts/Subscriptions.sol#L253


COMMENT-2 Returned value of transferFrom is not used

Smart Contract Subscriptions.sol - newSubscription
Subscriptions.sol - reloadSubscription
Subscriptions.sol - completeRefund

Status Fixed (68fd38a712614c9962b8104c8071f56daa74ac87)

Description

The ERC20.transferFrom function returns a boolean indicating if the operation
succeeded.
This value is not checked by the Smart Contract.
But mainnet implementations of ERC20 (USDC and USDT) revert if the transfer
fails, so there's no problem at the moment.

Recommendation

Check that the call to transferFrom returns true

// --- FOR EXAMPLE ---

// Transfer amount to destinationWallet

require(

token.transferFrom(_msgSender(), destinationWallet, totalTokenAmount),

"error occurred during transferFrom"

);

ooNodz Smart Contracts Audit
2023-06-28 10

https://gitlab.com/oonodz/contracts/-/blob/7b3fb1ef8ed1102193344543a12afc024bf60532/contracts/Subscriptions.sol#L253
https://gitlab.com/oonodz/contracts/-/blob/7b3fb1ef8ed1102193344543a12afc024bf60532/contracts/Subscriptions.sol#L365
https://gitlab.com/oonodz/contracts/-/blob/7b3fb1ef8ed1102193344543a12afc024bf60532/contracts/Subscriptions.sol#L152
https://docs.openzeppelin.com/contracts/2.x/api/token/erc20#IERC20-transferFrom-address-address-uint256-
https://snowtrace.io/address/0xa3fa3d254bf6af295b5b22cc6730b04144314890#code
https://snowtrace.io/address/0xba2a995bd4ab9e605454ccef88169352cd5f75a6#code


6. Conclusion

In conclusion, no significant security risks have been identified in the Smart
Contracts audited.

It is recommended to apply the few recommendations listed in this document.
They do not imply any current risk, but they will make the contracts more resilient
to future changes in the external contracts on which they depend.

The use of standard libraries (OpenZeppelin for Access Control & modeling of the
ERC721 token), common tools in the ecosystem (Hardhat & Solhint) and unit tests
guarantee a high level of security & quality in the code and readability of Smart
Contracts for those involved in the source code.

Best practices are applied, the code is clear, easy to understand and
comfortable to read.

ooNodz Smart Contracts Audit
2023-06-28 11



Appendix 1 : Additional Static Analysis
Results

File Topic Note

NodeIdNFT.sol NodeIdNFT.refund(address)
(contracts/NodeIdNFT.sol) sends eth
to arbitrary user Dangerous calls: -
user.transfer(__refund)
(contracts/NodeIdNFT.sol)

The refund
destination address
(user) is checked in
the same function to
verify that there is a
pending refund for
this user.

Subscriptions.sol computeRefundPeriodsOf(uint256,a
ddress) A control flow decision is
made based on The
block.timestamp environment
variable. The block.timestamp
environment variable is used to
determine a control flow decision.
Note that the values of variables like
coinbase, gaslimit, block number
and timestamp are predictable and
can be manipulated by a malicious
miner. Also keep in mind that
attackers know hashes of earlier
blocks. Don't use any of those
environment variables as sources of
randomness and be aware that use
of these variables introduces a
certain level of trust into miners.

The timestamp can
be manipulated by
miners, but the time
lag can only be a few
minutes, otherwise
the block is no longer
valid and is rejected.
In the use case
presented here, this
manipulation of a few
seconds is not a
problem.

ooNodz Smart Contracts Audit
2023-06-28 12

https://gitlab.com/oonodz/contracts/-/blob/7b3fb1ef8ed1102193344543a12afc024bf60532/contracts/NodeIdNFT.sol#L148
https://gitlab.com/oonodz/contracts/-/blob/7b3fb1ef8ed1102193344543a12afc024bf60532/contracts/Subscriptions.sol#L486-503

